
LeoBAS 
 

a set of BASIC extensions 
for the Sharp PC-1500 / Radio Shack PC-2 

 
sixth revision 

by Ernst Mulder 
© 1986, 2024 

 
  



Table of contents 
 
 
 
What is LeoBAS? 
 
The keyboard routine and character set 
 
Extension Block I - An alphabetical overview 
 
Extension Block II - An alphabetical overview 
 
Extension Block III - An alphabetical overview 
 
System information 
 
LeoBAS & PockEmul 
  



What is LeoBAS 
 
 
 
LeoBAS is a software extension to add new functionality to the Sharp PC-1500 and Radio 
Shack TRS-80 PC-2 Pocket Computers. It cannot be installed on just any of these without 
extra hardware. It can only work with a (writable) memory bank from &8800 to &9FFF bank 
switched on !PV. Some PC-1500 fan sites have developed or are in the process of developing 
modules for this purpose. The developer of the PockEmul emulator has created a special 
CE-15x “Memory Hack” extension that supports the loading of LeoBAS. Available since 
PockEmul 2.9.0. Instructions on how to load LeoBAS into PockEmul can be found on the last 
page of this manual. 
 
The PC-2 was introduced to me in a Tandy shop. As soon as I found out (in the shop) the 
PC-2 had PEEK, POKE and CALL commands my interest was awakened and with help of my 
father I could one day buy one. My quest to understanding my PC-2 and to start 
programming it in machine code started earlier on. Helped by excellent articles provided by 
Tandy’s Bruce Elliot and of course the Technical Reference Manual I was able to buy. 
I bought an ATARI SDRAM module and installed it inside my PC-2 using unlabelled thin wires 
from a transformer coil. I do not dare to open my PC-2 again for fear of breaking wires and 
not knowing anymore how to rewire them. 
 
After some practice I did all of my machine language programming without even using 
MNEMONICS, I knew all machine codes by heart. In decimal because I found hexadecimal 
hard to cope with at the time. Stupid me, I just didn’t know better. So, for me 154 was and 
still is the code for RTN. 
 
Sometime in the early 1990’s I wrote a PC-2 emulator for my Mac (running Mac OS). It still 
works today on an emulated 68k Mac using Sheepshaver and it runs under UTM. It was 
written using THINK Pascal with “competitive” multitasking and without threads. Never 
dared to publish it because it obviously contained the Pocket Computer’s copyrighted 
original ROM. My emulation was rudimentary, not as detailed as the emulated PC-2 in 
PockEmul. 
 
At the time I had both a self-assembled Mac Plus and a self-assembled Apple ][.I had set-up 
the PC-2 as a keyboard for the Apple ][ with wires hanging from its extension port to my 
Apple ][. That way I was also able to copy the PC-2 ROM and my own work by simply slowly 
“typing” it to a file on the Apple ][ which I then transferred to my Mac using a serial 
connection. 
 
Later I became member of the now defunct Dutch Sharp user club called SHACC. Great 
times. At this wonderful club I probably bought the SDRAM module mentioned above. 
I fondly remember their club meetings, the AREAD club magazine and their user days! 
 
So, TL;DR: I spent ages figuring out stuff and this is (was) the end result.  



In total wrote three Extension Blocks. In chronological order: 
 
BASIC Extension Block I (memory range &9800 - &9FFF) 
 

My initial set of BASIC extensions 
New keyboard routine 
New character set 

 
BASIC Extension Block II (memory range &9000 - &97FF) 
 
 Extra commands that didn’t fit in the first part 
 
BASIC Extension Block III (memory range &8800 - &8FFF) 
 

Mathematical constants 
Plotter table for the new character set 

 
Block I was the first one obviously. This block implements a couple of new commands I 
found useful, some to make programs shorter and a new keyboard routine and my character 
set. My keyboard routine especially really made my PC-2 more useful because I didn’t like 
the fact that the original one didn’t have auto-repeat. I used all 2 k bytes. I used all the tricks, 
even using the end part of a previous routine to start another, and use data as code where 
appropriate. I got complaints by people trying to disassemble my code! :-) 
 
I have decided to document my set of BASIC extensions in this manual. Nobody is probably 
going to use this extension set since the Pocket Computer is vintage, but I wanted to 
document it anyway. Some of the contents of this manual is actually from my original 
manual I once wrote on my Apple ][ (so I could try to sell this extension set on SHACC user 
days, actually sold one!). I actually needed a physical Apple ][ with a Super Serial Card and 
modem cable, a Mac and the wonderful Virtual ][ emulator to get the text out as a PDF using 
a virtual ImageWriter printer. 
 
One has to admire hardware emulation. 
 
At the moment I am writing this (late 2022) the knowledge I had in the late 1980’s has faded 
quite a bit. However, using the abundance of information that can be found on the internet 
nowadays plus what was left of my own documentation I regained quite a lot of it. I even 
fixed a bug in bank II that had escaped me at the time. 
 
I’m actually a bit amazed of what I could accomplish when I was young. All BASIC tokens 
have their proper tokens for their specific address ranges on the !PV bank. Several 
commands that are also available in other official extensions such as ERL, ERN and SPACE$ 
have their special F0 token to makes that possible without conflicts. 
 
Note that this set of extensions is probably not bug-free, so if you want to use it, it is at your 
own risk.  



The keyboard routine and character set 
Extension Block I & III 

 
 
 
When cold booting the Pocket Computer with Extension Block I loaded, an alternative 
keyboard routine is automatically activated. If this new keyboard routine causes unforeseen 
problems, it can be EXITed using the EXIT command. 
 
The new keyboard routine adds the following capabilities: 
 

• It has AUTO-REPEAT. 
 

• In REVERSE-mode it is now possible to use the up- and down-arrow keys to browse 
through the function key definitions. There are also three extra function keys 
available (one per block, three sets of [F1...F7]). 
 

• The function keys are now also accessible by shifting the number keys. So 
SHIFT-[1...7] will execute [F1...F7]. 
 
If no function key is defined it will produce the associated symbol ( ! " # $ % & ). 
SHIFT-0 and SHIFT-. (period) will produce curly brackets. SHIFT-8 and SHIFT-9 will 
produce the single quote and the Dutch ij as a single character. 
 

• Special characters !,",#,$,% and & can now be accessed by simply pressing the 
function keys. To access the function keys themselves the SHIFT key needs to be 
pressed first. 
 

• For people that want to be able to recognise unused memory (such as myself) the 
function SHIFT-CL will now replace all unused BASIC memory with the underscore 
character CHR$ 95. Not to be used when you use the memory after the BASIC 
program for other purposes such as machine language. 
 

• Turing the machine off using the OFF key will cause an AUTO-POWER-OFF, in other 
words you won’t lose any information. If you are halfway typing something and 
switch off, switch it on again and continue typing! If you want to turn it off the 
regular way, use SHIFT-OFF. 
 

• The lower-case characters shown when using SMALL mode are different than the 
regular lowercase. Created because I didn’t really like the original lower-case. The 
new lowercase has a new range in the character table and are not ASCII compatible. 
If you want to input the regular lower-case characters simply use the SHIFT key. This 
function can be disabled, see chapter “System information”.  



By using a function which was, I think, meant for the Japanese version of this Pocket 
Computer it is possible to add 128 characters to the character set. When enabled the 
katakana symbols ka na (カナ) are visible on the Pocket Computer’s LCD. The new characters 
are in the character range 128...255. 
 
Due to the way the BASIC interpreter handles tokens (two-byte codes representing a BASIC 
command to safe space and speed up the interpreter) there are two areas of characters that 
behave differently. 
 
Character range 128...223 
 
Character range 161...186, a subset of this range, is the LeoBAS set of lower-case characters. 
They can be typed by selecting SML. Type regular lower-case characters by typing 
SHIFT-[A-Z]. 
 
The rest of these characters can’t be typed but can be used in BASIC command lines without 
issues. Extension block I introduces a powerful command AWRITE that can directly write to 
the input buffer. This command can be used to write BASIC command lines containing 
characters in this range: 
 
 Example: AWRITE "10PRINT"+CHR$ 34+"H"   in PRO mode 
   +CHR$ 192+"l"+CHR$ 193+"ne ⮐ 
   10PRINT"Hélène 
   (Press back-arrow and press return to enter the line) 
   10 PRINT "Hélène 
 
 
Character range 224...255 
 
Bytes in this range are seen as BASIC tokens by the BASIC interpreter. They can therefore not 
be used in BASIC command lines. They can however be used in strings and by using CHR$. 
 
 Example: A$=CHR$ 234 ⮐ 
   A$+A$ ⮐ 
   ΩΩ 
 
Due to lack of space in Extension Blocks I and II the data needed to plot the characters in this 
character set is stored in Extension Block III. So, if block III isn’t loaded the plotter will not be 
able to print these characters, in fact it will probably crash hopelessly.  



Extension Block I 
an alphabetical overview 

 
 
 
This is an alphabetical overview of the commands in memory block &9800 - &9FFF. 
 
ANGLE  

 
This command produces the value of a stretched angle in the current angular mode. 
 
Example: DEGREE ⮐ 
  ANGLE ⮐ 
  180 

 
ASKEY 

 
This command gives the ASCII value of the key that is currently pressed and will 
return the value 0 when no keys are pressed. This is actually the short version of the 
regular command ASC INKEY$. 

 
Example: 10 BEEP 1:IF ASKEY END     in PRO mode 
  20 GOTO 10 

 
AT ERROR 
 

A variant on the regular command ON ERROR GOTO. When a running program 
encounters an error the program execution is continued after this command. 
 
Example: 10 AT ERROR PRINT "Incorrect input!    in PRO mode 
  20 INPUT A 

30 PRINT "LN(A)=";LN A 
40 GOTO 20 

 
Please note that the AT command can sometimes cause issues when entering BASIC 
commands. The following line, for instance, is misinterpreted when entered: 
 

Example: 10 IFATHENPRINT"Hello ⮐      in PRO mode 
   10 IF AT HENPRINT "Hello 
 
Avoid this by helping out the BASIC interpreter and type it with a temporary extra character: 
 

Example: 10 IFA:THENPRINT"Hello ⮐      in PRO mode 
   10 IF A:THEN PRINT "Hello 
   (Now simply remove the surplus ":" after the A) 
   10 IF A THEN PRINT "Hello  



AWRITE 
 

This really useful command does what can be seen as the opposite of the regular 
command AREAD. Instead of reading current value of the input buffer it actually 
writes its result to the input buffer and the running program is ENDed. The result can 
then be used for further calculations. 
 
This can be used for several purposes. The most common usage would be to create 
real function shortcuts to be used using the DEF key. 
 
Example: 10 "C"AREAD X:AWRITE COS X    in PRO mode 
 

45 DEF C       in RUN mode 
 
The COS value of 45 is calculated and the result is written back to the 
input buffer and can be used for further calculations. 

 
Another use can be to get special characters and even tokens to the input buffer. 
 
Example: AWRITE CHR$ 241+CHR$ 152 ⮐ 
 

Press the back-arrow and you’ll see the BASIC command LET. 
 
Example: AWRITE"10DATA"+STR$ LN 2 ⮐      in PRO mode 
 

Press the back-arrow and ⮐  and suddenly you have a BASIC line 
containing the value of LN 2 as a number. 
 

The following example can be used find the fraction of a given number and write it to 
the input buffer for further computations. 
 
Example: 300 "F"AREAD A:B=ABS FRAC A+(FRAC A=0):C=1  in PRO mode 

301 IF ROUND (TEN 4*B)/TEN 4LET D=B*FRAC (C/B):C=B:B=D:RGOTO 
302 B=FIX RCP C:C=FIX (FRAC A/C)+FIX A*B:AWRITE STR$ C+"/"+STR$ B 

 
.125 DEF F       in RUN mode 
The result 1/8 is written to the input buffer for further calculations. 

 
BIN$ 
 

This function converts an 8-bit number into its 8-bit binary value as a string. 
 
Example: BIN$ 42 ⮐  
  00101010  



BYTE$ 
 

This function converts an 8-bit number into its hexadecimal value as a string. 
 
Example: BYTE$ 66 ⮐  
  42 

DCR 
 

A command to decrease the value of one or more numerical variables. Non-existing 
variables (except for arrays) will be created. Useful for loops. 
 
Example: A=1,B=2,C=3 ⮐ 

DCR A ⮐ 
DCR A,B,C ⮐ 
PRINT A;B;C ⮐ 
-1 1 2 

 
ERL 
 

The ERL command shows the line number where the last BASIC command error 
occurred. The result will be 0 when the error has already been cleared. 

 
Example: 10 AT ERROR PRINT "Error in line ";ERL :RESUME  in PRO mode 

 
ERN 
 

Belongs together with ERL. Its result is the last BASIC error itself and 0 when the error 
has been cleared. 

 
Example: 10 AT ERROR PRINT "Error number ";ERN :RESUME in PRO mode 

 
EXIT 
 

This command will exit a custom keyboard routine (such as the one installed by 
LeoBAS Extension Block I) and switch back to the original keyboard routine. This can 
be useful if you are using your own keyboard routine in a part of memory you want 
to use for something else. If you want to use the memory range &9800 - &9FFF for 
something else than LeoBAS you will need to EXIT first as well. After a cold start the 
LeoBAS keyboard routine will be loaded again. 

 
FACT 
 

Use FACT to calculate the factorial of a number. The number must be in the range 
0 ≤ number ≤ 69. 

 
Example: FACT 69 ⮐ 

   1.711224524E 98



FIX 
 

Removes everything after the decimal point of a number. Similar to INT but different 
for negative numbers. 

 
Example: INT -2.5 ⮐ 

   -3 
   FIX -2.5 ⮐ 
   -2 
 
FN 
 

A very useful function I’m particularly proud of. It can be used to parameterize 
programs by defining constants and can be used to store often used formulae. They 
can be queried within programs but also in RUN mode. Best explained by showing 
some examples. 

 
Example: 100 PRINT "The surface is";FN "Surface    in PRO mode 

   110 PRINT "The naam is ";FN "Name 
   120 END 
   ... 
   900 "Height"6 

901 "Width"7 
   902 "Name""Rob 
   903 "Surface"FN "Height"*FN "Width 
 
 

Example: 10 "X"W OR Z       in PRO mode 
   20 "Y"Z AND Y 
   30 "X XOR Y"(FN "X" AND NOT FN "Y") OR (NOT FN "X" AND FN "Y") 
 
   FN "X XOR Y ⮐      in RUN mode 
   gives value of (W OR Z) XOR (Z AND Y) 
 

Example: 10 "AREA"π * SQR R      in PRO mode 
 
   R=10 ⮐       in RUN mode 
   FN "AREA ⮐ 
   9.934588266 
 
FRAC 
 

Sibling to INT, will remove everything before the decimal point of a number. 
 
Example: FRAC 2.42 ⮐ 

   0.42  



GET 
 

This command will wait for a key to be pressed. During this wait the machine can be 
switched off and AUTO-POWER-OFF will be operational as well. Depending on the 
kind of variable after GET either the ASCII value or the actual character. 

 
Example: 10 WAIT 0:PRINT "Press any key...":WAIT   in PRO mode 

   20 GET A$ 
   30 PRINT "You pressed the";A$ 
 

Example: GET A ⮐ 
   (Now press the ´1´) 
   A ⮐ 
   49 
 
HEXVAL 
 

Will display the decimal value of the hexadecimal data found at the beginning of a 
string starting from the left and stopping at the first non-hexadecimal character. If 
the string is empty or does not start with a hexadecimal value the result will be 0. The 
value should be a 16-bit value. 

 
Example: HEXVAL "4000 is a hexadecimal number ⮐ 

   16384 
 
Example: HEXVAL "HELLO ⮐ 
  0 

 
HOME 
 

Does the same as CURSOR 0. One byte shorter in memory steps in a program and a 
little bit faster. I added this command simply because I had some spare bytes left to 
fill in this memory block. 

 
ICR 
 

Sibling to DCR. This command increases the value of one or more numerical variables. 
Non-existing variables (except for arrays) will be created. Useful for loops. 

 
Example: A=1,B=2,C=3 ⮐ 

   ICR A ⮐ 
   ICR A,B,C ⮐ 
   PRINT A;B;C ⮐ 
   3 3 4  



ICURSOR 
 

A command that can be used to implement an inverting cursor at the specified cursor 
position. 

 
Example: 10 WAIT 0:PRINT "Press a key:?     in PRO mode 

   20 ICURSOR 12:FOR I=1TO 20:NEXT I:A=ASKEY:IF A=0GOTO 20 
   30 WAIT :PRINT "You pressed:";A:END 
 
INV 
 

Inverts the whole screen, a column, individual dots or even a combination thereof. 
 

Example: 10 INV        in PRO mode 
  (Inverts the whole screen) 
 
Example: 10 INV 5       in PRO mode 
  (Inverts column number 5) 
 
Example: 10 INV 2,10       in PRO mode 
  (Inverts dot (2,10)) 

 
 Example: 10 INV x1,y1,x2,y2,...       in PRO mode 
   (Inverts several dots) 
 
 Example: 10 INV x1,y1,x2,y2,z       in PRO mode 
   (Inverts several dots and column z) 
 
 Example: 500 PAUSE "  * CALCULATOR-MUSEUM.NL *  in PRO mode 
   501 INV: INV: INV: FOR Y=0TO 6: FOR X=0TO 155 
           INV X,Y: NEXT X:NEXT Y 
   502 FOR Z=0 TO 155: INV Z: NEXT Z: GOTO 501 
 
KEYWAIT 
 

Similar to GET but without output to a variable. The command will wait for a key to 
be pressed. During this wait the machine can be switched off and AUTO-POWER-OFF 
will be operational as well. 

 
Example: 10 WAIT 0:PRINT "Press any key...     in PRO mode 

   20 KEYWAIT :END  



PRES 
 

Clears one or more dots on the screen. 
 

Example: 10 PAUSE "No dot on the i     in PRO mode 
   20 PRES 86,0 
   30 KEYWAIT :END 
 
PSET 
 

Like PRES but this time to set one or more dots on the screen. 
 
 Example: 10 PAUSE "Dots on the a     in PRO mode 
   20 PSET 73,0,75,0 
   30 KEYWAIT :END 
 
RCP 
 

I saw this function (and the FACT function and the TEN and SQU functions found 
further on in this document) on the Sharp PC 1401 and thought they might be handy 
to have. The result of RCP will be the reciprocal value of the numerical non-zero 
argument. 

 
Example: RCP 2 ⮐ 

   0.5 
 
RESUME 
 

You might have encountered this function earlier in this document. It clears an error 
caught by ON ERROR GOTO or AT ERROR and will continue the program at the 
command directly after where the error occurred. Can be used in RUN mode as well 
to do the same after a program has stopped because of an error. 

 
Example: 10 FOR A=0TO 10      in PRO mode 

   20 PRINT "LN(A)=";LN A 
   30 NEXT A 
   40 END 
 
   RUN ⮐       in RUN mode 
   ERROR 39 IN LINE 20 
   CL 
   RESUME ⮐ 
   (The program will continue)  



ROUND 
 

Used to round of numbers after the first decimal. 
 
 Example: ROUND 5.4999 ⮐ 
   5 
 
 Example: ROUND 5.5 ⮐ 
   6 
 
 Example: ROUND -4.5 ⮐ 
   -4 
 
 Example: ROUND -4.50001 ⮐ 
   -5 
 
SCROLL 
 

Scrolls the screen to the left. What disappears on the left reappears on the right. 
Without an argument it will scroll the screen one column. With an argument it will 
scroll the specified number of columns. The scrolling speed can be specified using the 
WAIT command with a value in the range 1 ... 255. 

 
Example: 10 WAIT 2:PRINT "Scrolling example    in PRO mode 

   20 SCROLL 156: END 
 
SHIFT 
 

Like SCROLL but what disappears on the left doesn’t come back at the right. 
 

Example: 10 WAIT 1:PRINT "My mind is going!    in PRO mode 
   20 SHIFT 95: END 
 
SPACE$ 
 

Example: PRINT "5";SPACE$ 5;"Spaces ⮐ 
   5          Spaces 
 
SQU 
 

Quite easily implemented by a single jump to an existing ROM function this command 
can be used to square a number. 

 
Example: SQU -5 ⮐ 

   25  



STRING$ 
 

Create a string of specific length and of a specific character. The first argument is the 
length, the second the ASCII code of the character. 

 
Example: STRING$ (5,65) ⮐ 

   AAAAA 
 
TEN 
 

Calculate 10 to the power of the argument. Produces an error (which is a bug) on 
arguments with a value of -100 or smaller. The actual result should be rounded to 0 
for those negative arguments. 

 
Example: TEN 4 ⮐ 

   10000 
 
Example: TEN .5 ⮐ 

   3.16227766 
 
TME$ 
 

Gives the value of STR$ (TIME * TEN 4). 
 

Example: TME$ ⮐ 
   127235358 
   (If the timestamp of that particular moment 
    was January 27 at 23:53:58) 
 
VMJ 
 

A function meant for users using machine language programming. It can be used to 
look up addresses of vector-jumps of this Pocket Computer. 

 
Example: VMJ &E0 ⮐ 

   52619 
 
WORD$ 
 

WORD$ is the 16-bit equivalent of BYTE$ and will give the two-byte hexadecimal 
value of a 16-bit number. 

 
Example: WORD$ VMJ &E0 ⮐ 

   CD8B  



ZERO 
 

Zeroes or clears the value of all the argument variables. Non-existing variables 
(except for arrays) will be created and emptied immediately. Handy for program 
initialisation. Can be used in RUN mode as well as in programs. 
 
Example: 10 ZERO A,B,AA$,L$      in PRO mode 
  20 ...  



Extension Block II 
an alphabetical overview 

 
 
 
This is an alphabetical overview of the commands in memory block &9000 - &97FF. 

 
ADDRESS 
 

The value of the 16-bit pointer at the address of the 16-bit argument. 
 

Example: ADDRESS &C05C ⮐ 
   50820 
 
BINVAL 
 

Sibling to HEXVAL. Will display the binary value of the binary data found at the 
beginning of a string starting from the left and stopping at the first non-binary 
character. If the string is empty or does not start with a binary value the result will 
be 0. The value should be a 16-bit value. 

 
Example: BINVAL "101010 is a binary number ⮐ 

   42 
 
BUSY 
 

If you do not want to show the BUSY symbol at the top left of your screen when 
running a program, you can now switch it on or off by entering BUSY OFF in your 
program. Switch it back on with BUSY ON. 

 
CAP$ 
 

Turns all alphabetical characters in a string into capital characters. Works for regular 
lower case as well as for the new lowercase introduced by Extension Block I. 

 
Example: CAPS$ "AbBa ⮐ 

   ABBA 
 
CHAR$ 
 

Returns a specific character in a string. The first parameter is the string, the second is 
the character position as a number in the range 1...80. An empty string is returned if 
the number is greater than the length of the string. 

 
Example: CHAR$ ("ABCD", 2) ⮐ 
  B  



CLOCK$ 
 

This command shows the time in a neat manner using the character set of 
Extension Block I. The second example shows a nice clock one-liner using some 
LeoBAS commands. 

 
Example: CLOCK$ ⮐ 
  20:08 42 

 

 Example: 200 "CLOCK"WAIT 0:BUSY OFF:    in PRO mode 
           PRINT STRING$ (26,255): CURSOR 8:PRINT SPACE$ 10: 
           REPEAT CURSOR 9:PRINT CLOCK$ :UNTIL 
 
DATE 
 

Returns the current day of the month. 
 
Example: DATE ⮐ 
  30 

 
DELETE 
 

Deletes a range of BASIC command lines. All command lines present in the specified 
range are deleted. If there are no BASIC command lines in the specified range an 
error will be displayed. 

 
 Example: DELETE 100,200      in PRO mode 
   (Deletes line 100 up to and including line 200) 
 
 The first or the second argument may be omitted. Two examples: 
 
 Example: DELETE ,200       in PRO mode 
   (Deletes all lines up to an including 200) 
 
 Example: DELETE 200,       in PRO mode 
   (Deletes line 200 and the lines following)  



DNOT 
 

Decimal NOT. A proper function to negate numbers. The standard NOT command 
sometimes does not suffice. This command turns non-zero real numbers into zero, 
and turns zero into -1. 

 
Example: DNOT 0 ⮐ 
  -1 

 
Example: DNOT 207422 ⮐ 
  0 

 
Example: DNOT -42 ⮐ 
  0 

 
DUMP$ 
 

With one argument this returns a string of 16 characters found at the specified 
address. With two arguments the length of the string can be specified to a maximum 
of 80 characters. 

 
Example: DUMP$ &C34F⮐ 
  NEW0? :CHECK BRE 

 
Example: DUMP$ (&9802, 7) ⮐ 
  EXT 1.1 

FAST 
 

Belongs with SLOW found further on in this document. SLOW slows down the Pocket 
Computer, useful for users that have increased the clock speed with a 5 MHz quartz 
crystal. SLOW, using an interrupt routine, essentially slows down the machine to half 
speed so that the plotter doesn’t overspeed. FAST cancels this slowdown again. 

 
INSTR 
 

Returns the position of a string within another string. Returns zero when there is no 
match. 
 
Example: INSTR ("ABCDE", "B") ⮐ 
  2 

 
Example: INSTR ("Where is my bike", "my") ⮐ 
  10  



LSB 
 

Returns the Least Significant Byte of a two-byte number as a decimal value. 
 

Example: LSB 12345 ⮐ 
   57 
 

Example: BYTE$ LSB &9876 
  76 

 
MLTPOKE 
 

Handy command to poke more than one byte at a time. Can be used to poke 
numbers, text, addresses and hexadecimal values. Multiple arguments are possible. 
Handy in combination with DUMP$. Best to show an example. 
 
Example: MLTPOKE &8000,#A12345, #T"HELLO",42,#H"5F5F 
 

#A to specify a two-byte address 
#T to specify a string of characters 
#H to specify a string of hexadecimal numbers 
no prefix for just a single byte 

 
MSB 

 
Returns the Most Significant Byte of a two-byte number as a decimal value. 

 
Example: MSB 10940 ⮐ 

   42 
 
NAME$ 
 

This command tries to find the name of the 16-bit argument interpreting it as a BASIC 
token. When no token is found the string "~" is returned. 

 
Example: NAME$ &E280 ⮐ 

   DELETE 
 
ODD 
 

Returns whether a number in the range -32768 ... 32767 is odd or not. 
 

Example: ODD 1 ⮐ 
   1  



POL 
 

Calculates the length of the vector specified by horizontal and vertical position. 
The first argument is the horizontal (real) position, the second argument is the 
vertical (imaginary) position. 

 
 Example: DEGREE ⮐ 
   POL (SQR 2,SQR 2) ⮐ 
   2 
 
POL# 
 

Calculates the angle of the vector specified by horizontal and vertical position. 
The first argument is the horizontal (real) position, the second argument is the 
vertical (imaginary) position. 

 
 Example: DEGREE ⮐ 
   POL# (SQR 2,SQR 2) ⮐ 
   45  



POP 
 

To keep track of GOSUB...RETURN, FOR...NEXT and REPEAT...UNTIL/LOOP the BASIC 
interpreter maintains a stack. Under certain circumstances (a.k.a. tricky 
programming) it might be useful to be able to manipulate that stack. By the way, 
REPEAT...UNTIL/LOOP flow control commands are a LeoBAS addition, described 
further down in this document and they use the same stack mechanism. 

 
 POP S  Clears the BASIC stack completely. 
 POP N  Clears the last FOR...NEXT or REPEAT...UNTIL/LOOP stack entry. 
 POP R  Clears the last GOSUB...RETURN stack entry. 
 

POP S can only be used on its own. 
 
POP N and POP R can be used in combination, so to escape two nested FOR...NEXT 
loops the command POP N,N can be used. As I wrote, useful for really tricky 
programming. Beware that S, N and R are switches here, not the names of variables. 
 
The following example shows how it can be useful to clear a stack entry: 

 
 Example: 10 WAIT 0:PRINT "Press a key:?     in PRO mode 
   20 E=10: REPEAT A=ASKEY :IF DNOT A:LOOP E: 
         ICURSOR 12:GOTO 20 
   30 POP N:WAIT :PRINT "You pressed:";CHR$ A:END 
 

This example is a more responsive version of the example code shown with the 
ICURSOR command earlier in this document. The REPEAT...LOOP command is located 
after an IF and breaks the loop when the IF condition is true. The POP N is necessary 
after the break to clear the stack and prevent a stack overflow. 

 
REC 
 

Calculates the real part of the vector specified by length and angle. First argument is 
the length, the second argument is the angle. 

 
 Example: DEGREE ⮐ 
   REC (1,60) ⮐ 
   0.5 
 
REC# 
 

Calculates the imaginary part of the vector specified by length and angle. First 
argument is the length, the second argument is the angle. 

 
 Example: DEGREE ⮐ 
   REC# (1,60) ⮐ 
   0.8660254038E-01  



RELOC 
 

Moves the current BASIC program to a new location in memory. Simply type RELOC 
followed by the new memory location to move your program. You might for instance 
want to move your program up 100 bytes to be able to store a piece of machine code 
before it. Afterwards you can move your program 100 bytes back again. Remember 
that the current start of your BASIC program in memory is STATUS 2 - STATUS 1. 

 
RENEW 
 

If you have accidentally entered NEW and wish you hadn’t, with RENEW you can get 
your program back, at least if you haven’t entered a new one in the meantime. 
 
Together with RELOC and knowledge of the size and locations of your BASIC 
programs you can use RENEW and RELOC together to have multiple BASIC programs 
in memory. Use NEW with the address where your program is stored (or RELOCated) 
and use RENEW to get it back. 

 
REPEAT UNTIL 
 

This is a variant on FOR...NEXT. It will repeat the code following REPEAT until the 
condition after UNTIL is true. When there is no condition after UNTIL, the condition is 
assumed as TRUE. The following example shows the complete character set. 
 
Example: 400 "CHARS" WAIT 0: A=33: REPEAT PRINT CHR$ A;: in PRO mode 

   10 ICR A: UNTIL A=59: REPEAT SHIFT 6: CURSUR 25: 
   10 PRINT CHR$ A: A=A+1-(A=255)*223: UNTIL 
 
 This long line needs to be entered in multiple (tokenising) steps. 
 
REPEAT LOOP 
 

A variant on REPEAT...UNTIL. Using REPEAT this way a numeric counter variable 
should be specified after LOOP. LOOP will decrease the value of the variable and will 
break the loop when the value of the variable is -1. The LOOP variable is an integer. If 
it isn’t initially, it will be after the first loop step.  
 
Example: 10 A=10:WAIT 0      in PRO mode 
  20 REPEAT PRINT A:LOOP A:END 
  (The value of A is now -1)  



REPLACE$ 
 

The name of this function seems to indicate this is a sting-returning function. It isn’t. 
It can be used to manipulate an alphanumeric variable. The first argument is the 
name of the variable, the second the position. The replacement string is specified 
after the = symbol. 

 
 Example: A$="This is a great! ⮐ 
   REPLACE$ (A$, 9)="SUPER ⮐ 
   A$ ⮐ 
   This is SUPER! 
 
REV$ 
 
 Returns the reverse string of the string argument. 
 
 Example: REV$ "olleH ⮐ 
   Hello 
 
RGOTO 
RGOSUB 
RRESTORE 
 

Relative versions of GOTO, GOSUB and RESTORE. RGOTO -10 will try to GOTO the 
BASIC line number 10 less than the current one. 
 
To make looping the current line easier RGOTO without an argument will jump to the 
beginning of the current line. 

 
SLOW 
 
 See FAST. Slows overclocked machines down to be able to use the pen plotter.  



Extension Block III 
an alphabetical overview 

 
 
 
This is an alphabetical overview of the commands in memory block &8800 - &8FFF. 

 
C# 

Meaning: The constant speed at which all electromagnetic radiation 
  including light travels in a vacuum. 
Value:  299792458 

 
E# 

Meaning: The number e to the power of 1 
Value:  2.718281828 

 
E0# 

Meaning: The permittivity of vacuum (the ability of electrical fields to 
  pass through a classical vacuum). 
Value:  8.85418782E-12 

 
Ee# 

Meaning: Elementary charge (the electric charge carried by a single 
  proton). 
Value:  1.6021892E-19 

 
G# 

Meaning: The IAU gravitational constant. 
Value:  6.672E-11 

 
H# 

Meaning: Planck’s constant. 
Value:  6.626176E-34 

 
K# 

Meaning: Boltzmann’s constant. 
Value:  1.380662E-23 

 
Me# 

Meaning: The mass of an electron. 
Value:  9.109534E-34 

 
Mp# 

Meaning: The mass of a proton. 
Value:  1.6726485E-27  



Mn# 
Meaning: The mass of a neutron. 
Value:  1.6749543E-27 

 
Mu# 

Meaning: The mass of a muon. 
Value:  1.883566E-28 

 
NA# 

Meaning: The Avogadro Constant. 
Value:  6.022045E23 

 
R# 

Meaning: The gas constant. 
Value:  8.31441 

 
T0# 

Meaning: The absolute zero temperature in degrees Celsius. 
Value:  -273.15 

 
U0# 

Meaning: Magnetic constant (vacuum permeability). 
Value:  1.256637061E-06 

 
Ue# 

Meaning: Electron magnetic moment. 
Value:  9.284832E-24 

 
Up# 

Meaning: Proton magnetic moment. 
Value:  1.4106171E-26 

 
Uu# 

Meaning: Muon magnetic moment. 
Value:  4.490474E-26 

 
V0# 

Meaning: The volume of 1 mol of a gas at NTP. 
Value:  22.4136  



System information 
 
 
 
Used memory blocks: 
 
 Bank switched on !PV 
 
 Extension Block I:  &9800 - &9FFF 
 Extension Block II:  &9000 - &97FF 
 Extension Block III:  &8800 - &8FFF 
 
Other information: 
 
 Keyboard table:  &9A80 - &9AFF 
 
 Character set table:  &9B00 - &9D7F 
 
 Plotter-table:   &89BE - &8D6A 
 
System switches (Changing these will only work when the memory is writable): 
 
 LeoBAS lower-case on:  POKE &99E5, &60 
 LeoBAS lower-case off:  POKE &99E5, &20 
 
 CA memory-fill byte:  &99CA 
  



LeoBAS & PockEmul 
 
 
 
The PockEmul emulator has emulation of multiple Pocket Computers including the SHARP 
PC-1500A and the Radio Shack TRS-80 PC-2. I personally prefer the Radio Shack version for 
that is the one LeoBAS was programmed on. 
 
PockEmul 2.9.0 introduces a special memory extension for these calculators, the CE-15x, 
providing extra memory in system areas. The PC-2 ROM of the PC-2 in PockEmul 2.9.0 is not 
the latest ROM version and I cannot guarantee that LeoBAS is compatible (for it jumps into 
the ROM a lot). PockEmul 2.9.1 and later contain the latest PC-1500A/PC-2 ROM version 
(A04) which is what LeoBAS was developed for. If used under PockEmul 2.9.0 one can load 
and use the A04 ROM into the CE-15x if one has a copy. 
 
To use LeoBAS, start the SHARP PC-1500A or Radio Shack TRS-80 PC-2 using the desktop 
version of PockEmul. Then load the CE-15x extension and connect it either to the Pocket 
Computer or to the attached CE-150 plotter. Switch of the Pocket Computer. 
 
Open the CE-15x’s contextual menu and select “Memory Configuration” > “8000 - 9FFF” > 
“No PV" to select the correct memory bank for LeoBAS. 
 
Not select “Advanced Tools” from the top-left hamburger menu. Klick “Memory” at the 
bottom of the screen. Klick on the icon of the CE-15x extension. 
 
Now click “Action ...” > “Load binary file...” and select the downloaded LeoBAS.bin file. Load 
it at position 800. 
 
Press “Back” to go back to the Pocket Computer and switch it back on. 
 
If all is successful the katakana symbol ka na (カナ) is now visible on the Pocket Computer’s 
LCD. Have fun! 
 
PockEmul: 
 
 https://pockemul.com 
 
LeoBAS: 
 
 https://calculator-museum.nl/calculators/leobas/LeoBAS.bin 


